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Abstract:  This paper is related to cantilever beam subjected to base excitation. The mathematical model of the cantilever beam 

under sinusoidal base excitation is prepared. Then governing differential equation and its solution for this system is obtained. 

With the help of MATLAB software dynamic response curves and mode shapes are obtained. The effect of internal damping and 

external damping on the dynamic response is analyzed. The effect of variation of beam dimensions as well as beam material on 

the dynamic response is analyzed. The dynamic response of the equivalent cantilever beam with fixed base and applied external 

excitation force is obtained and compared with the base excitation system. 

I. INTRODUCTION 

The engineering structures such as bed of the machine tool, beams, shafts, axles, frames etc., possess mass and elasticity. When 

such structures are excited by the dynamic loads they vibrate. These structures are continuous systems and have more than one 

natural frequency. If any one of the excitation frequencies coincides with any one of the natural frequency of the continuous 

system, the resonance takes place. The resonant amplitude is very large which may produce large deflection of the structure 

giving rise to very high induced stresses causing failure of the structure, if these stresses are beyond the allowable stress. Many of 

such structures shown in fig. 1.1 may be modelled as cantilever beams. As such, it is necessary to analyze the dynamic response 

of cantilever type structures, at design stage, subjected to harmonic base excitation. In the literature, the results of dynamic 

analysis of cantilever type structures subjected to force excitation are reported. Very few results on dynamic response analysis of 

cantilever type structures subjected to base (kinematic) excitation have been reported in the literature. As such in this dissertation 

work, it is proposed to carry out the dynamic response analysis of a cantilever beam type structure subjected to harmonic base 

excitation. Many real life applications (tall vertical buildings, watch towers, chimneys, electric transmission towers, wind mill 

supporting pole, airplane wings etc.) cantilever type structures are subjected to base excitation. 

 

                                     
(a) Tower                                  (b) Wind mill pole                (c) Transmission tower 

               
                 (d) 2DOF Piezoelectric vibration harvester [8]                   (e) Off-road vehicle equipment  

Fig.1.1. Structures subjected to base excitation 

Figure 1.2 shows a typical cantilever beam of length (l), width (b), and thickness (t). (b>>t) subjected to base (kinematic or 

motion) excitation. 
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Fig.1.2. Cantilever beam under harmonic base excitation [7] 

The equation of motion of cantilever beam system shown in fig.1.2 will be analyzed using classical Euler-Bernoulli beam theory 

and its dynamic response will be obtained using the modal superposition method and the natural frequencies and mode shapes of 

this system will be determined.  

II. LITERATURE REVIEW 

Researchers in the past have carried out some theoretical and experimental studies in the area of dynamic response analysis of 

cantilever beam type structures subjected to force excitation. It is seen that, very few research results are available on the 

cantilever beam type structures subjected to base excitation. Some of the important research results in this area reported in 

literature are reviewed briefly. 

Freundlich2018 [1]*has carried out the transient vibrations analysis of a Bernoulli-Euler cantilever beam with a rigid mass 

attached at the end and subjected to base motion. The viscoelastic properties of the beam material are described using a fractional 

Kelvin-Voigt model. The Riemanne-Liouville fractional derivative of an order of 0 <gamma <1 is used. Exact relationships for 

the natural frequencies and mode shapes of the beam are derived. Moreover, a method of calculating the damped natural 

frequencies of the analyzed beam is presented. The forced-vibration solution of the beam is derived using the mode superposition 

method. Transient movement of the base is described by an oscillating function with a linearly time-varying frequency. A 

convolution integral of the fractional Green's and forcing functions is used to achieve the beam response. 

Meesala2018 [2] has modeled the nonlinear dynamics of a cantilever beam with tip mass system subjected to different excitation 

and exploited the nonlinear behavior to perform sensitivity analysis and propose a parameter identification scheme for nonlinear 

piezoelectric coefficients. A governing equation of a cantilever beam with a tip mass subjected to principal parametric excitation 

has been developed by using Generalized Hamilton’s Principle taking into consideration the nonlinear boundary conditions. 

Using a Galerkin's discretization scheme, the discretized equation for the first mode is developed for simpler representation 

assuming linear and nonlinear boundary conditions. Distributed parameter and discretized equations separately has been solved 

using the method of multiple scales. Cantilever beam tip mass system subjected to parametric excitation is highly sensitive to the 

detuning is determined. Assuming linearized boundary conditions yields the wrong type of bifurcation has shown. 

Sonawane and Talmale2017 [3] have carried out the theoretical and experimental modal analysis of single rectangular cantilever 

plate. To determine the natural frequency and mode shape of a single rectangular cantilever beam condition and to compare the 

results obtained by finite element analysis with experimental results was the main objective. Design of cantilever beam of 

rectangular plate and analysis in ANSYS has been carried out. A good correlation between the mathematical, FEA and 

experimental result is observed. The analysis result helps in depicting the failure loads for different conditions. Aluminum single 

rectangular cantilever plate is studied in their work. For mathematically Euler’s Bernoulli’s beam theory is used. The results 

obtained by both the methods are found to be satisfactory. 

Skoblar et al. 2016 [4] have carried out the calculation of the dynamic response to harmonic transverse excitation of cantilever 

Euler-Bernoulli beam carrying a point mass with the mode superposition method. This method uses mode shapes and modal 

coordinate functions which are calculated by separation of variables and Laplace transformations. A procedure for defining 

natural frequencies, mode shapes and functions of modal coordinates is described and results are used in the modal superposition 

method. The accuracy of defined expressions is confirmed on examples with and without Rayleigh damping. 

Pawar and Sawant2015 [5] have carried out the analysis of cracked cantilever beam subjected to harmonic excitation to obtain 

its dynamic response by considering nonlinearities present in it. In order to carryout nonlinear dynamic analysis first of all 

nonlinearities present in the dynamic system have been found out. The nonlinearities presenting cantilever beam are obtained by 

doing theoretical, numerical and experimental static analysis of cantilever beam. For numerical, static analysis ANSYS software 

has been used. An experimental setup for vibration analysis of cracked cantilever beam is developed and results of both are 

compared and verified. In this verification the results of numerical and experimental analysis are closer to each other is observed. 

Kotambkar2014 [6] has investigated the mass loading effect due to accelerometer on the natural frequency of slender beam in 

free-free configuration. Analytical formulation to compute modal properties of a mass loaded beam has been developed. The 

beam is considered as Euler-Bernoulli beam with additional mass effect is modeled by considering jump in shear force at the 

location and modal properties are investigated. The conclusion has been made such that for validation of the geometric model 

before its use for further analyses, results of software based modal analysis have to agree closely with the experimental modal 

analysis of the physical system. 

Sun et al. 2013 [7] have determined the response distributions of cantilever beam under sinusoidal base excitation. By moment 

and force equilibrium equations, an analytical model is built for this cantilever beam, and then a method to predict dynamic 
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response at base excitation is proposed. Finally, the method is used to solve the vibration response distributions of the cantilever 

beam at base excitation. Correctness of this method is also proved by comparing the result with experimental data. 

Wu et al. 2012 [8] have developed a novel compact piezoelectric energy harvester using two vibration modes. The harvester 

comprises one main cantilever beam and an inner secondary cantilever beam, each of which is bonded with piezoelectric 

transducers. By varying the proof masses, the first two resonant frequencies of the harvester can be tuned close enough to achieve 

useful wide bandwidth. Experiment and simulation to validate the design concept has been carried out. The results show that the 

proposed novel piezoelectric energy harvester is more adaptive and functional in practical vibration circumstances. 

Velazquez2007 [9] has investigated the vibration of a highly flexible cantilever beam. The order three equation of motion 

developed by Crespo da Silva for the nonlinear flexural-flexural-torsion vibration of in extensional beams, are used to investigate 

the time response of the beam subjected to harmonic excitation at the base. The equation for the planar flexural vibration of the 

beam is solved using the finite element method. The finite element model developed in this work employs Galerkin's weighted 

residuals method, combined with the Newmark technique, and an iterative process. 

Banks and Inman1989 [10] have used a partial differential equation model of a cantilever beam with a tip mass at its free end to 

study damping in a composite. Four separate damping mechanisms consisting of air damping, strain rate damping, spatial 

hysteresis and time hysteresis are considered experimentally. Dynamic tests were performed to produce time histories. The time 

history data is then used along with an approximate model to form a sequence of least squares problems. The solution of the least 

squares problem yields the estimated damping coefficients. The resulting experimentally determined analytical model is 

compared with the time histories via numerical simulation of the dynamic response. The suggested procedure is compared with a 

standard modal damping ratio model commonly used in experimental modal analysis. 

Meirovitch, 2001 [11].This book presents material fundamental to a modern treatment of vibrations. In this book, the focus is on 

analytical developments and computational solutions. A large number of examples and computer programs written in MATLAB 

are provided. 

Boresi, 1985 [12]. This book presents an integration of both traditional methods and innovations in the field of engineering.  

Clough and Penzien, 1993 [13].In this book, the treatment of single-degree of freedom system, multi-degree of freedom discrete 

parameter systems and infinite degree of freedom continuous systems is presented.   

Bhavikatti,1996 [14]. In this book all the basics of strength of materials are presented. Basic concepts on stress, strain, and 

theories of failure are elaborated. 

III. MATHEMATICAL MODEL FORMULATION 

3.0 INTRODUCTION: 

In this chapter, a mathematical model of a cantilever beam under harmonic base excitation is developed. For this purpose, Euler 

Bernoulli beam theory has been applied. The dynamic response analysis of cantilever beam under base excitation is carried out 

using the modal superposition method. 

3.1 Analytical Model of Cantilever Beam under Harmonic Base Excitation: 

Figure 3.1 shows a cantilever beam close to that of a constant section Euler-Bernoulli beam under base excitation. 

     

         Fig. 3.1.Cantilever beam under base excitation [7] 

Where, l= Length of the beam, E= Elastic Modulus, I= Moment of inertia,  

m= mass of the beam per unit length, A= cross sectional area. 

Figure 3.2 (a) shows a small segment of beam and in fig. 3.2(b) free body diagram of cross section is shown. 

                                       
(a) A small segment of beam       (b) Force analysis on the cross section 

A B 

C D 
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     Fig.3.2.Force analysis [7] 

In the fig. 3.2 (b), V=shear force on the vertical section, M= Bending Moment, C= velocity damping coefficient.  

In this case, following sign convention is used  

i. Force: upward positive, downward negative 

ii. Moment: clockwise positive, anticlockwise negative 

3.2 Dynamic Response Analysis: [7] 

The total displacement of one point on the cantilever beam under base excitation is defined as, 

 
( , ) ( ) ( , )x t y t x t  

                             (3.1) 
 

Where, ( , )x t =dynamic deflection curve, ( )y t = harmonic base excitation as ( ) sin( )y t Y t
 

 

Where, = excitation frequency (rad/s), Y =displacement amplitude of the base excitation 

A small segment is taken from the beam and the force analysis is carried out.  

3.2.1 In this study two types of distributed viscous damping force are taken into consideration: [7] 

1. External damping force ( )D t ,which is directly proportional to velocity
t




 

 ( )D t c
t


 


 

2.  Internal damping force r which is directly proportional to deformation velocity
t




 

r rc
t





 


 

Where, rc = damping coefficient of deformation velocity,  = strain. 

Internal damping force can produce additional bending moment and shown in fig. 3.3 

                            

 Fig.3.3.Bending moment produced from the internal damping force [7] 

It is assumed that the strain distribution on the cross section is linear, and then the additional bending moment rM

produced by the internal damping force r  is given as, 

r r

z

M zdA  r

z

c zdA
t




                       (3.2)

       

 

Where, z =distance between one point and the neutral axis  

From the materials mechanics, the equation between strain and beam deflection is obtained as 
2

2

( ( , ))x t
z

x





 


                       (3.3) 

3.2.2   Derivation of the equation (3.3): [12]   
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                    Fig.3.4.Deflected beam due to bending moment [12] 

Here, variables and constants are taken as according to [7]. In the fig. 3.4, 

  O’ = centre of the deflected beam and it lies on the negative side of z axis, 

  x = original length of cross section, xxe = change in length of cross section,  

  zR = distance of neutral axis from the O’. 

We assume that deflections are small, 
2

2

1 ( ( , ))

z

x t

R x





               (3.4)  

xx
xx

e

x
 

  

( )xx xxe x   

O’PQ and QRS are similar triangles  

( ) xx

z

xx

R z


  

Dividing both sides by ( x ) we obtain  

1 xx

zR z


 

               (3.5)

 

Now, from Eq. (3.4) and Eq. (3.5) 

  

2

2

( ( , )) xxx t

x z


 


 

  

2

2

( ( , ))
xx

x t
z

x





 


  Thus Eq. (3.3) is derived. 

Substituting Eq. (3.3) into Eq. (3.2), the additional bending moment rM becomes, 

  

2

2

( ( , ))
r r

z

x t
M c z zdA

t x

  
  

  


3
2

2

( ( , ))
r

z

x t
c z dA

x t


 

    

  

3

2

( ( , ))
r

x t
c I

x t


 

                 (3.6) 

  

2

z

I z dA 
    

 

      We have, 

fM E

I y R


 

  [14]

       from this,      

2

2

( ( , ))
f

EI x t
M EI

R x


  


 

Where,    
fM =bending moment due to flexural formula 

Then the total bending moment M of the small segment is, 

  

2 3

2 2

( ( , )) ( ( , ))
r

x t x t
M EI c I

x x t

  
  

                       (3.7)

 

From the moment balance of the whole small segment, let us take the moment about face BC in fig. 3.2(b). 

  

2
2

2

1 ( ( , )) ( ( , ))
0

2

M x t x t
M dx M Vdx c m dx

x t t

    
       
                      (3.8)

 

Neglecting the high order item and referring to the Eq. (3.7), the Eq. (3.8) is simplified as, 

  

2 3

2 2

( ( , )) ( ( , ))
r

M x t x t
V EI c I

x x x x t

     
    
                          (3.9)

 

Further, from the force balance of the whole small segment: 

  

2

2

( ( , )) ( ( , ))
0

V x t x t
V dx V m c dx

x t t

    
     
                    (3.10)

 

Substituting the expression of ( , )x t shown in eq. (3.1), the eq. (3.10) becomes, 

  

2 2

2 2

( ( )) ( ( , )) ( ( )) ( ( , ))
0

V y t x t y t x t
dx m m c c dx

x t t t x

      
     

                   (3.11) 

Further simplification and organization implies, 
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2 2

2 2

( ( , )) ( ( , )) ( ( )) ( ( ))V x t x t y t y t
m c m c

x t t t t

     
   

                      (3.12)

 

 

At last, substituting the expression of V  shown in Eq. (3.9) into the Eq. (3.12) gives the movement equation of the small 

segment under the sinusoidal base excitation and shown as, 

4 5 2 2

4 4 2 2

( ( , )) ( ( , )) ( ( , )) ( ( , )) ( ( )) ( ( ))
r

x t x t x t x t y t y t
EI c I m c m c

x x t t t t t

          
      

          

                                  (3.13) 

3.3 Dynamic Response of Cantilever Beam under Sinusoidal Base Excitation: 

The vibration response ( )t of any point on the cantilever beam is ( ) ( ) ( , )t y t x t   , where, ( , )x t  is the 

dynamic deflection curve of the beam. Here the modal superposition method is adopted to solve the expression of the 

dynamic deflection curve ( , )x t . The every order natural frequency of the beam is set as i , i =1, 2, 3… and the 

relative regular modal shape function is ( )iY x , which satisfies orthogonalitly condition of as follows: 

3.3.1   Orthogonalitly condition: [13] 

           

         (a) Mode ‘m’                     (b) Mode ‘n’ 

             Fig.3.5.Two modes of vibration for the same beam [13] 

In the fig. 3.5, 

Two different vibration modes ‘m’ (fig. 3.5(a)) and mode ‘n’ (fig. 3.5(b)) are shown for the same beam. In each mode 

displaced shape and inertial forces producing the displacements are indicated. In this case, 

 
mIf =Inertial forces for mode ‘m’,  

nIf =Inertial forces for mode ‘n’, 

 ( , )mu x t =displacement for mode ‘m’, ( , )nu x t =displacement for mode ‘n’, 

 ( )mY x =shape function for mode ‘m’, ( )nY x =shape function for mode ‘n’, 

 ( )m t =Response function for mode ‘m’, ( )n t =Response function for mode ‘n’, 

 ( )m x =mass of beam= m . 

If we apply Betties law to these two deflection patterns then, it states that “the work done by the inertial forces of mode 

‘n’ acting on the deflection of mode ‘m’ is equal to the work of the inertial forces of mode ‘m’ acting on the 

displacement of mode ‘n’”. In other words, 

  

0 0

( ) ( ) ( ) ( )
n m

l l

m I n Iu x f x dx u x f x dx 
                  (3.14)

 

  ( , ) ( ) ( )m m mu x t Y x t ,  ( , ) ( ) ( )n n nu x t Y x t  

  
2 ( ) ( )

mI m m mf mY x t  ,  
2 ( ) ( )

nI n n nf mY x t   

Putting the values of displacements and inertia forces just defined into Eq. (3.14) we get, 

  
2 2

0

( ) ( ) ( ) ( ) 0

l

n m m nY x Y x m x dx    Since m n  2 2( ) 0n m    

  Therefore, 

0

( ) ( ) ( ) 0

l

m nY x Y x m x dx 
                  (3.15)

 

The normalizing procedure most often used in computer programs for structural vibration analysis, involves adjusting 

each modal amplitude to the amplitude iY  which satisfies the condition, 
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  1T

i iY mY   

For scalar shape function  
T

i iY Y  

Therefore orthogonalitly condition becomes, 

  
2

0

( ) 1

l

imY x dx                      (3.16) 

In the view of above condition the dynamic deflection curve ( , )x t is expressed by the regular response ( )i t and the 

regular modal shape ( )iY x using modal superposition method. 

3.3.2   Modal superposition method: [13] 

            Any physically permissible displacement pattern can be made up by superposing appropriate amplitudes of the vibration 

mode shapes for the structure. The essential operation of the modal superposition analysis is the transformation from the 

geometric displacement coordinate to the modal amplitude or normal coordinates. 

 
   

Figure 3.6 shows that, any arbitrary deflection of the beam is equal to the sum of 

various mode shapes of the same beam. 

1

( , ) ( ) ( )i i

i

x t Y x t 




                 (3.17) 

 

 

 

 

 

 

 

 

 

Fig.3.6.Arbitrary beam displacements by normal coordinate [13]  

  

3.3.3   Expression of ( )iY x for a cantilever beam: [11] 

From a force balance and moment balance of a beam we get the following equation.  

  

2 2 2

2 2 2

( , ) ( , )
( , )

x t x t
EI f x t m

x x t

    
  

   
                  (3.18) 

Where,    f(x,t)=externally applied uniformly distributed dynamic load.  

By separating shape function ( , )x t in the spatial variable x and t, and expressed as, 

  ( , ) ( ) ( )x t Y x t                      (3.19) 

 Putting Eq. (3.19) in the Eq. (3.18), 

2 2
2

2 2

( )
( )

d d Y x
EI mY x

dx dx


 
  

 
(3.20) 

 Hence the differential equation becomes, 

4
4

4

( )
( ) 0

d Y x
k Y x

dx
  (3.21) 

Where, 

2
4 m

k
EI


  

The boundary conditions for a cantilever beam are 

  ( ) 0Y x 
( )

0
dY x

dx
 0x                     (3.22) 

  

2

2

( )
0

d Y x

dx


3

3

( )
0

d Y x

dx
 x l                   (3.23) 

The general solution of Eq. (3.21) is 

  ( ) sin cos sinh coshY x A kx B kx C kx D kx                    (3.24) 

The first of boundary conditions (3.22) yields 
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  (0) 0Y B D            So that,  D B                     (3.25) 

For the second boundary condition we write 

   
( )

cos sin cosh sinh
dY x

k A kx B kx C kx D kx
dx

                   (3.26) 

 This yields,     

0

( )
( ) 0

x

dY x
k A C

dx 

    so that, C A                                 (3.27) 

Hence, the solution reduces to  

  ( ) (sin sinh ) (cosh cosh )Y x A kx kx B kx kx                    (3.28) 

Before enforcing boundary conditions (3.23), we write  

   
2

2

2

( )
(sin sinh ) (cos cosh )

d Y x
k A kx kx B kx kx

dx
                    (3.29) 

   
3

3

3

( )
(cos cosh ) (sin sinh )

d Y x
k A kx kx B kx kx

dx
                     (3.30) 

Using Eq. (3.29), the first of boundary conditions (3.23) yields 

  
sin sinh

cos cosh

kl kl
B A

kl kl


 


                   (3.31) 

Inserting Eq. (3.31) into Eq. (3.30) and using second of boundary conditions (3.23), we obtain the characteristic equation 

  cos cosh 1kl kl                        (3.32) 

Introducing Eq. (3.31) into Eq. (3.28), in conjunction with the eigen values i L , we write the eigen functions in the 

form   

  
sin sinh

( ) sin sinh (cos cosh )
cos cosh

i i
i i i i i i

i i

k l k l
Y x D k x k x k x k x

k l k l

 
    

                            

(3.33) 

After rearranging the Eq. (3.33) 

  
sinh sin

( ) cosh cos (sinh sin )
cosh cos

i i
i i i i i i

i i

k l k l
Y x D k x k x k x k x

k l k l

 
    

               (3.34)

 

Where, iD =Parameter related to the excitation level, ik =Parameter related to natural frequency  

Corresponding to the first five order, the values of ik  are as follows, 

1.875

l
,
4.694

l
,
7.855

l
,
10.996

l
,
14.137

l
 respectively. 

Substituting Eq. (3.17) for ( , )x t into Eq. (3.13) for movement equation implies that, 

4 5 2

2
1 1 1 1

4 4 2 2

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )
( ( )) ( ( ))

i i i i i i i i

i i i i

r

Y x t Y x t Y x t Y x t
y t y t

EI c I m c m c
x x t t t t t

   
   

   

       
                          

       

   
 

Simplifying further 

   4 4 2

4 4 2
1 1 1 1

( ) ( ) ( ) ( ) ( ( )) ( ( ))
( ) ( ) ( ) ( )

i i i i

r i i i

i i i i

d Y x t d Y x t y t y t
EI c I mY x t cY x t m c

dx dx t t

 
 

   

   

  
      

  
   

 

                                     (3.35)

 

Utilizing the orthogonalitly conditions, the Eq. (3.35) is integrated along the longitudinal direction of the beam, which 

yields 

4 4
2

4 4
10 0 0

( ( )) ( ( ))
( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )

l l l

i i
i i i r i i i i i

i

d Y x d Y x
t EI Y x dx t c I cY x Y x dx t mY x dx F t

dx dx
  





 
    

 
  

 

                                              (3.36)

 

Where,    

2

2

0

( ( )) ( ( ))
( ) ( )

l

i i

y t y t
F t m c Y x dx

t t

  
   

  
  

Assuming that the two damping coefficients c and rc mentioned above are proportional respectively to mass m and 

modulus of elasticity E, we can write, 
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 c m , rc E       where,   and   are constants. 

The Eq. (3.36) is simplified as, 

   2 2( ) ( ) ( ) ( )i i i i i it t t F t        
                 (3.37)

 

Here, 

4
2

4

0

( ( ))
( )

l

i
i i

d Y x
EI Y x dx

dx
    

Accordingly,     

2

2

0

( ( )) ( ( ))
( ) ( )

l

i i

y t y t
F t m m Y x dx

t t


  
   

  
  

Furthermore, the i  order modal damping ratio i  is expressed as, 

  

2

2 2 2

i i
i

i i

  


 


  

                   (3.38)

 

  1
1

12 2





 

 

2
2

22 2





 

(3.39), (3.40)  

After solving Eq. (3.39) and (3.40) for  and   the coefficients ,   are determined from the modal damping ratio 

and natural frequency, the solution formulas are, 

  
 1 2 1 2 2 1

2 2

2 1

2    


 





 

 2 2 1 1

2 2

2 1

2    


 





                   (3.41), (3.42)

  

Where, 1 , 2 , 1 , 2  can be obtained from the experiment. Combining Eq. (3.37) and Eq. (3.38) yields the 

final equation, 

  
2( ) 2 ( ) ( ) ( )i i i i i i it t t F t      

                  (3.43)
 

The solution of Eq. (3.43) is easily obtained by reference to that of a single degree of freedom system and shown as, 

 
   0 0

0

0

1
( ) sin cos ( ) sin ( )i i i i

t
t i i i i

i i i i i i

i i

t e t t F e t d
     

       
 


        

   


 

                       (3.44)

 

 Where, 
21i i i    

 [7]                                                                  (3.45)

 
 

  0

0

( ,0) ( )

l

i im x Y x dx  
   

0

0

( ,0) ( )

l

i im x Y x dx  
                                            (3.46), (3.47)

      

 

Finally the total displacement of the cantilever beam under sinusoidal base excitation is expressed as, 

  ( , ) ( ) ( , )x t y t x t  
1

( ) ( ) ( )i i

i

y t Y x t




 
                

(3.48) 

From the Eq. (3.48) the dynamic response of cantilever beam under harmonic base excitation can be determined. 

3.4 Solution Procedure to obtain the Dynamic Response Curve with the help of MATLAB Software: 

In this section the solution of the Eq. (3.48) is obtained with the help of MATLAB software. This procedure is also explained step 

by step. The dynamic response curve obtained from the MATLAB software is presented. The specifications of cantilever beam 

subjected to base excitation are shown in section 3.4.1. 

3.4.1 Cantilever beam specifications: 

Beam type: Ti-6Al-4V 

Physical and mechanical properties: 

Density  =4500 kg/m3, Youngs modulus E=110GPa, Shear modulus G=45GPa, Bulk modulus K=150GPa,   

Poissons ratio  =0.35, Yield strength 
y =900MPa 

Ultimate strength= u =950MPa, Mass per unit length=m=0.10125 

Dimensions of the beam: Length L= 255mm, Width b= 15mm, Thickness t= 1.5mm 

Note: 25mm section to be mounted in the clamping device. Therefore l= 230mm. 
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3.4.2 Solution procedure to obtain dynamic response curve: 

Here dynamic response curve is obtained at x=0.150m from the fixed end of the cantilever beam. Amplitude of the base excitation 

Y is taken as 0.001m, base excitation frequency w is taken as 110 rad/s. Now, to plot the curve between independent variable t 

and the dependent variable ( , )x t below procedure is followed. 

( , ) ( ) ( , )x t y t x t  
1

( ) ( ) ( )i i

i

y t Y x t




   

In the equation, 
( ) sin( )y t Y t

the amplitude of base excitation is tentatively taken as Y=0.001m and the value of base 

excitation frequency w is taken near to the first natural frequency of the beam i.e. w=110 rad/s is also known,hence y (t) is the 

function of t only. MATLAB program is prepared for this equation.  

Now, in the Eq. (3.34) 

sinh sin
( ) cosh cos (sinh sin )

cosh cos

i i
i i i i i i

i i

k l k l
Y x D k x k x k x k x

k l k l

 
    

   

1
iD

ml
 =6.55298

, 

1 1.875k l  , 2 4.694k l  , 3 7.855k l  , 4 10.996k l  , 5 14.137k l 

 

0.150x m , 0.230l m

 
MATLAB program for this equation is prepared and following values are obtained. 

1( ) 6.9201Y x  , 2 ( ) 6.0844Y x  , 3( ) 8.1536Y x   , 4 ( ) 0.8125Y x  , 5 ( ) 7.7983Y x  .

 
Now, in the Eq.(3.44) 

   0 0
0

0

1
( ) sin cos ( ) sin ( )i i i i

t
t i i i i

i i i i i i

i i

t e t t F e t d
     

       
 


        

   


 
The natural frequencies of the beam are calculated with the help of Euler Bernoulli equation as follows. 

2

412
n

Et
k

l



 ,   nk =3.52, 22.0, 61.7, 121, 200

 

1 115.892rad
s

  , 
2 724.325rad

s
  , 

3 2031.4028rad
s

  , 
4 3983.788rad

s
  ,

5 6584.774rad
s

 
 

i Is constant and it is obtained as follows 
 

2

2 2 2

i i
i

i i

  


 


  

         Where, 

0.518  ,  
83.168 10  

 

1 0.002236  , 
4

2 3.69 10   , 
4

3 1.597 10   , 
4

4 1.28 10   , 
4

5 1.44 10  
 

Damped natural frequencies are calculated with the following equation.
 

21i i i    
  Here, 

21 1i  

Therefore, 1 1   , 2 2   , 3 3   , 4 4   , 5 5  

 

0

0
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l

i im x Y x dx  
, 

1

( ,0) ( ) (0)i i

i

x Y x 





, 

 
0

0

1
(0) ( ) sin ( )i i

t

i i i i

i

F e d
 

     


 
  

  


 

2

2

0

( ( )) ( ( ))
( ) ( )

l

i i

y y
F m c Y x dx

 


 

  
   

  
  ( ) sin( ) cos( )ilmY Y x     

 

Here MATLAB program is prepared to find the values of  0i  

10 20 30 40 50 0          

The same procedure is followed to find out the values of 0i , those values are as follows 

10 20 30 40 50 0          

Now, the MATLAB program is written for the Eq. (3.48) and the dynamic response curve is obtained as shown in the fig. (3.7(a)) 

and fig.(3.7(b)) 
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Figure 3.7(a) shows the graph between dynamic deflection ( , )x t  vs. time t between the time domains of 0s to 0.6s for the base 

excitation amplitude value Y=0.001m. Figure 3.7(b) shows the same graph for the base excitation amplitude value Y=0.0015m. 

Figure 3.7(c) shows the same graph for the base excitation amplitude value Y=0.002m 

 
                                             (a)                                     (b) 

 
          (c) 

   Fig.3.7.Dynamic deflection (0.15, )t (m) vs. time t(s), (a) Y=1mm, (b) Y=1.5mm, (c) Y=2mm  

 

         Fig.3.8.Dynamic deflection (0.15, )t (m) vs. time t(s) combined 

3.4.3 Solution procedure to obtain mode shapes of the cantilever beam: 

In this case x is independent variable and   is dependent variable. The value of t is taken as ten times the natural time period of the 

respective mode shape. Base excitation frequency is taken as the natural frequency w of the respective mode shape.  

In order to obtain mode shapes the equation ( , ) ( ) ( , )x t y t x t  
1

( ) ( ) ( )i i

i

y t Y x t




  can be written for different mode 

shapes separately as follows and separate MATLAB program is prepared for each mode shape. 

For first mode shape 1 1( , ) ( ) ( )x t Y x t  ,           for second mode shape 2 2( , ) ( ) ( )x t Y x t   

For third mode shape 3 3( , ) ( ) ( )x t Y x t  ,          for fourth mode shape 4 4( , ) ( ) ( )x t Y x t   

For fifth mode shape 5 5( , ) ( ) ( )x t Y x t   

Figure 3.8 (a), (b), (c), (d) and (e) are the first, second, third, fourth and fifth mode shapes respectively. 
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                            (a)                                                                                         (b) 

 
                           (c)                                                                      (d) 

          
                                                        (e)  

                            Fig.3.8. Dynamic deflection ( , )x t (m) vs. Location from the clamped end x (m) 

Figure 3.9 shows combined mode shapes in a single graph. 

 

    Fig.3.9. Dynamic deflection ( , )x t (m) vs. Location from the clamped end x (m) 
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Figure 3.10show that, as we go to the higher modes, the value of first maximum amplitude goes on decreasing. Also the x 

location from the clamped end where the first maximum amplitude is obtained goes on decreasing with increasing modes.  

Similarly, Fig.3.11 shows that, Maximum beam deflection value goes on decreasing exponentially with increasing mode shapes. 

         

        Fig.3.10. First max amplitude 1(max) st (m) vs. x(m)      Fig.3.11.Maximum beam deflection (max) (m) vs. no. of modes 

3.4.4 Effect of external damping c and internal damping rc on the dynamic response  

1. Constant internal damping rc =3484.8, varying external damping c 

Figure 3.12 shows the graph between maximum dynamic deflections at x location of 0.15m vs. external damping c at constant 

internal damping rc . It indicates that, as external damping c value increases maximum dynamic deflection value decreases. It 

decreases with very high rate up to the c =1 but after that it decreases with very less rate. 

        

                          Fig.3.12.Maximum dynamic deflection max(0.15, )t (m) vs. external damping c  

2.  Constant external damping c, varying internal damping rc  

Figure 3.13 shows that maximum dynamic deflection max(0.15, )t does not change considerably with respect to the change in 

internal damping rc value. 

                    

                      Fig.3.13.Maximum dynamic deflection max(0.15, )t (m) vs. internal damping  rc  

3. Dynamic response curve by taking internal damping rc =0 

Below figures show dynamic deflection at x location of 0.15m from the clamped end (0.15, )t  vs. time t by taking internal 

damping rc =0. Figures 3.14(a), (b) and (c) are drawn at base excitation amplitudes of 1mm, 1.5mm and 2mm respectively. 

Figure 3.14(d) is combined graphs of fig. 3.14 (a), (b) and (c). From this analysis it is observed that, dynamic deflection curves 

obtained without considering internal damping rc is exactly coinciding with the dynamic deflection curves obtained by 

considering internal damping rc . Hence it can be concluded that internal damping rc does not take much role in the dynamic 

deflection of the beam. 
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             (a)                                                                                            (b)                  

 
             (c)                                                                (d) 

                                                             Fig.3.14.Dynamic deflection (0.15, )t (m) vs. time t(s)   

        

3.4.5 Dynamic response analysis of the same cantilever beam by considering base as fixed and applying external excitation force 

at x location of 0.15m from the fixed end. 

Figure 3.15 shows the same cantilever beam fixed at one end and externally applied dynamic load ( , )f x t  at location x=0.15m. 

                

           Fig.3.15.Cantilever beam with fixed base and applied dynamic load ( , )f x t at x location 0.15m 

Governing differential equation of the beam 

4 2

4 2

( ( , )) ( ( , ))
( , )

x t x t
EI m f x t

x t

  
 

   

Where, 

( , )x t =dynamic deflection of the beam

 

Boundary Conditions 

1 Free end: 

Bending moment = 

2

2

( ( , ))
0

x t
EI

x





 

2 Fix end: 

Deflection = ( , )x t =0, slope=
( , )

0
x t

x





 

In this case ( , )x t becomes the total dynamic deflection and its equation is, 

1

( , ) ( ) ( )i i

i

x t Y x t 




  

Where, ( )iY x  is the mode shape equation of the beam and it is as shown below 
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sinh sin
( ) cosh cos (sinh sin )

cosh cos

i i
i i i i i i

i i

k l k l
Y x D k x k x k x k x

k l k l

 
    

   

( )i t  Is the time function equation of the beam and it is as shown below 

0

1
( ) cos( ) sin( ) ( )sin( ( ))

t

i i i i i i i

i

t A t B t F t d
mb

      


     

Where, 

0

( ) ( , ) ( )

l

i iF f x t Y x dx   , 
2

0

( )

l

ib Y x dx   , 0( , ) sin( )f x t F t  

Here, MATLAB program is prepared for the total dynamic deflection equation ( , )x t and following two graphs have been 

plotted.  

1 Graph between dynamic deflection (0.15, )t  (m) vs. time t (s) at various initial excitation force 0F and at constant force 

excitation frequency 110  rad/s, as shown in fig.3.16. 

Figure3.16 shows that dynamic deflection (0.15, )t increases with the increase in the initial excitation force 0F . 

2 Graph between maximum dynamic deflection max( , )x t (m) vs. force excitation frequency  (rad/s) at constant excitation 

force 0F =1N, as shown in fig.3.17. 

Figure 3.17 shows that as there is increase in the force excitation frequency  from 90 rad/s to first natural frequency of the 

cantilever beam that is 115.8 rad/s, the maximum dynamic deflection value max(0.15, )t increases continuously. After that it 

decreases continuously with the further increase in the    value. 

 

  
  Fig.3.16.Dynamic deflection (0.15, )t (m) vs. time t (s) 

             

Fig.3.17.Maximum dynamic deflection max(0.15, )t (m) vs. force excitation frequency  (rad/s) 

Closure: In this chapter mathematical model of the cantilever beam subjected to base excitation has been prepared. Then the 

governing differential equation of this system and its solution is obtained. MATLAB program is prepared to obtain dynamic 

response curves and mode shapes of the beam. The effect of internal damping c and external damping rc on the dynamic response 

is shown. Then in the end mathematical model for the equivalent cantilever beam system but fixed at one end and applied external 
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excitation force at 0.15m from the fixed end is prepared. Governing differential equation and its solution is obtained. Again 

MATLAB program is prepared to obtain the dynamic response for this system. 

IV. DYNAMIC RESPONSE ANALYSIS BY VARYING DIMENSIONS AND MATERIAL 

4.0 INTRODUCTION: 

In this chapter, the effect of variation of dimensions as well as the effect of variation of material on the dynamic response of the 

cantilever beam has been shown. In section 4.1 dimensions are varied by varying width b to thickness t ratio for the same material 

of previous chapters i.e. Ti-6Al-4V. In section 4.2 AISI 1065 material has been taken and dimensions are kept as same as in the 

previous chapters i.e. length l=230mm, width b=15mm, thickness t=1.5mm.    

4.1 Dynamic Response Analysis by Varying Dimensions (Width b to Thickness t Ratio): 

In this section dynamic response curves are obtained for three different values of b by t ratio and for each value of b by t ratio four 

different values of b and t are taken as shown in the table 4.1. Hence twelve different dynamic response curves are obtained. As 

there is variation in the dimension there is variation of certain values in the MATLAB program of dynamic response.  

Table4.1. Values of b and t for different b/t ratio 

b/t b (mm) t (mm) 

5 2.5 5 7.5 10 0.5 1 1.5 2 

10 5 10 15 20 0.5 1 1.5 2 

15 7.5 15 22.5 30 0.5 1 1.5 2 

The following constant or variable values vary for respective value of width b and thickness t.  

Mass per unit length m varies, hence constant term iD  varies since 
1

iD
ml


 

Thickness t varies hence natural frequency i  varies since 

2

412
n

Et
k

l





 

As there is variation in natural frequency i , i  varies since 
2

i

i





  

Note: From the section 3.4.4 it has been concluded that internal damping is not taking much role in the dynamic response; hence 

internal damping rc  is taken as zero. 

Note: Here external damping coefficient c is assumed as constant for all the variations and it is taken as 0.05245. 

In the equation c m as c is constant and m is varying   varies with respect to m. 

The changed values for respective width b to thickness t have shown in the following respective table.  

4.1.1 Dynamic response curves for b/t=5: 

The following parameter values of the table replaced in the dynamic response program and respective response curve is obtained. 

Table4.2. Parameters for b/t=5 

b, t M 
iD  1  2  3  4  5  

  
1  2  3  4  5  

2.5,0.5 0.0056 27.86 38.63 241.44 677.13 1327.9 2194.9 9.36 0.121 0.019 0.0069 0.0035 0.0021 

5,1 0.0225 13.9 77.26 482.9 1354.3 2655.9 4390 2.33 0.015 0.0024 0.0008 0.0004 0.0002 

7.5,1.5 0.051 9.23 115.89 724.35 2031.5 3983.9 6585 1.03 0.0044 0.0007 0.0002 0.0001 0.00007 

10,2 0.09 6.95 154.53 965.8 2708.6 5311.9 8780 0.58 0.002 0.0003 0.0001 0.00005 0.00003 

Figure 4.1 shows dynamic response curves for width b to thickness t ratio equal to 5 obtained at different values of width b and 

thickness t such that. Figure 4.1(a) is obtained at width b=2.5mm and thickness t=0.5mm and at base excitation frequency 

=30rad/s. Figure 4.1(b) is obtained at b=5mm and t=1mm and at  =70rad/s. Figure 4.1(c) is obtained at b=7.5mm and t=1.5mm 

and at  =110rad/s. Figure 4.1(d) is obtained at b=10mm and t=2mm and at  =150rad/s  
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                         (a)                                                                           (b) 

 
                  (c)                                                                            (d) 

       Fig.4.1. Dynamic deflection (0.15, )t (m) vs. time t(s) for b/t=5 

Figure 4.2 shows Maximum dynamic deflection max(0.15, )t  obtained from the fig.4.1 (a), (b), (c) and (d) respectively. 

         

              Fig.4.2.Maximum dynamic deflection max(0.15, )t (mm) vs. Variations for b/t=5 

4.1.2 Dynamic response curves for b/t=10: 

The following parameter values of the table replaced in the dynamic response program and respective response curve is obtained. 

Table4.3. Parameters for b/t=10 

b, t M 
iD  1  2  3  4  5  

  
1  2  3  4  5  

5,0.5 0.01125 18.68 38.63 241.44 677.13 1327.9 2194.9 4.66 0.06 0.0096 0.0034 0.0017 0.0011 

10,1 0.045 9.335 77.26 482.9 1354.3 2655.9 4390 1.16 0.0075 0.0012 0.00043 0.00022 0.00013 

15,1.5 0.10125 6.22 115.89 724.35 2031.5 3983.9 6585 0.52 0.0022 0.00036 0.00013 0.000065 0.00004 

20,2 0.18 4.668 154.53 965.8 2708.6 5311.9 8780 0.29 0.00094 0.00015 0.00005 0.000027 0.000002 

Figure 4.3 shows dynamic response curves for width b to thickness t ratio equal to 10 obtained at different values of width b and 

thickness t such that. Figure 4.3(a) is obtained at width b=5mm and thickness t=0.5mm and at base excitation frequency 

=30rad/s. Figure 4.3(b) is obtained at b=10mm and t=1mm and at  =70rad/s. Figure 4.3(c) is obtained at b=15mm and t=1.5mm 

and at  =110rad/s. Figure 4.3(d) is obtained at b=20mm and t=2mm and at  =150rad/s  
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                        (a)                                                                                        (b) 

 
                    (c)                                                                       (d) 

Fig.4.3. Dynamic deflection (0.15, )t (m) vs. time t(s) for b/t=10 

Figure 4.4 shows Maximum dynamic deflection max(0.15, )t  obtained from the fig.4.3 (a), (b), (c) and (d) respectively. 

         

               Fig.4.4. Maximum dynamic deflection max(0.15, )t (mm) vs. Variations for b/t=10 

 

 

 

4.1.3 Dynamic response curves for b/t=15: 

The following parameter values of the table replaced in the dynamic response program and respective response curve is obtained. 

Table4.4. Parameters for b/t=15 

b, t M 
iD  1  2  3  4  5  

  
1  2  3  4  5  

7.5,0.5 0.017 15.2 38.63 241.44 677.13 1327.9 2194.9 3.08 0.04 0.0064 0.0023 0.0012 0.0007 

15,1 0.067 7.56 77.26 482.9 1354.3 2655.9 4390 0.78 0.005 0.0008 0.0003 0.00015 0.00009 

22.5,1.5 0.152 5.08 115.89 724.35 2031.5 3983.9 6585 0.34 0.0015 0.0002 0.00008 0.000043 0.000026 

30,2 0.27 3.81 154.53 965.8 2708.6 5311.9 8780 0.19 0.0006 0.0001 0.00004 0.000018 0.000011 

Figure 4.5 shows dynamic response curves for width b to thickness t ratio equal to 15 obtained at different values of width b and 

thickness t such that. Figure 4.5(a) is obtained at width b=7.5mm and thickness t=0.5mm and at base excitation frequency 

=30rad/s. Figure 4.5(b) is obtained at b=15mm and t=1mm and at  =70rad/s. Figure 4.5(c) is obtained at b=22.5mm and 

t=1.5mm and at  =110rad/s. Figure 4.5(d) is obtained at b=30mm and t=2mm and at  =150rad/s.  
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   (a)                                                                                 (b) 

   
 (c)                                                                                (d) 

Fig.4.5. Dynamic deflection (0.15, )t (m) vs. time t(s) for b/t=15 

Figure 4.6 shows Maximum dynamic deflection max(0.15, )t  obtained from the fig.4.5 (a), (b), (c) and (d) respectively. 

          

               Fig.4.6. Maximum dynamic deflection max(0.15, )t (mm) vs. Variations for b/t=15 

 

4.2 Dynamic Response Analysis by Changing Material (AISI 1065): 

In this section dynamic response curve is obtained for AISI 1065 material.  

4.2.1 Cantilever beam specifications: 

Beam type: AISI 1065 

Physical and mechanical properties: 

Density  =7850kg/m3, Youngs modulus E=200GPa, Shear modulus G=80GPa, Bulk modulus K=140GPa,  

Poissons ratio  =0.27, Yield strength 
y =490MPa, Ultimate strength= u =635MPa, Mass per unit length=m=0.1766 

Dimensions of the beam: Length L= 255mm, Width b= 15mm, Thickness t= 1.5mm 

Note: 25mm section to be mounted in the clamping device. Therefore= 230mm. 

4.2.2 Solution Procedure: 

Mass per unit length 
M

m
l

  where, M= Total mass of the beam = V lbt   

Therefore m bt =0.1766,  
1

4.96iD
ml

  ,  

2
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i n

Et
k

l



  

1 =145.435 rad/s, 2 =908.965 rad/s, 3 =2549.234 rad/s, 4 =5000 rad/s, 5 =8263.32 rad/s 

Note: Internal damping is neglected and external damping coefficient is taken as 0.05245. 
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c m ,  =0.2969, 
2

i

i





  

1 =0.00102, 2 =0.0001633, 3 =0.000058, 4 =0.000029, 5 =0.00001796 

Figure 4.7 shows Dynamic deflection (0.15, )t (m) vs. time t(s) for AISI 1065 material obtained by putting all the above values 

of parameters and constants in the MATLAB program.  

             
                   Fig.4.7. Dynamic deflection (0.15, )t (m) vs. time t(s) for AISI 1065 

Closure: In this chapter, the effect of variation of dimensions as well as the effect of variation of material on the dynamic response 

of the cantilever beam has been shown. Three different values of b/t ratio i.e. 5, 10 and 15 are taken and for each value of b/t ratio 

four different values of b and t are taken. Corresponding changes in the values of constants and variables which are dependent on 

the values of b and t have been made and MATLAB program is prepared accordingly. Hence twelve different response curves 

have been plotted and analyzed. Also the dynamic response curve for AISI 1065 material has been plotted by keeping the 

dimensions of the beam as in the previous chapter.   

V. CONCLUSIONS 

1. For base excitation amplitude values of 1mm, 1.5mm and 2mm respective maximum dynamic deflection values at x 

location of 150mm from the clamped location are 19.51mm, 29.26mm, 39.01mm. Hence it can be concluded that as base 

excitation amplitude Y increases, the maximum dynamic deflection at particular x location also increases. 

2. From the obtained mode shapes of the cantilever beam, it is concluded that, at node points (where there is no deflection), 

designer can attach accessories which requires zero deflection. Also at maximum deflection point, the designer can 

attach damper to reduce deflection of the beam. 

3. For constant external damping c =0.05245, if internal damping rc  is increased from 0 to 10000, maximum dynamic 

deflection is remaining constant for all the internal damping coefficient rc
 
values. Hence it is concluded that, the effect 

of internal damping rc is very minute in the dynamic response of the beam and hence designer may not be taken into 

consideration while designing the cantilever beam type structures. 

4. As external damping coefficient c increases from 0 to 3, maximum dynamic deflection max value decreases from 

20.75mm to 4.19mm. From c =0 to 1.5 max is decreasing rapidly i.e. 20.75mm to 7.15mm respectively and after that it 

is decreasing with slower rate. Hence it is concluded that, as external damping increases, maximum dynamic deflection 

max is decreases with a decreasing rate. 

5. For the base excitation amplitude Y=1mm, base excitation frequency  =110 rad/s and at x location of 150mm from the 

clamped end the maximum dynamic deflection max  is obtained as 19.51mm. If base of this cantilever beam is fixed and 

external excitation force ( , )f x t  is applied at x location equal to 150mm from the fixed end such that amplitude of 

force excitation 0F  is taken as 1N and frequency of base excitation   is taken as 110 rad/s, the obtained max value is 

10.71mm. Hence it is observed that, as compared to equivalent forced excitation cantilever beam, the maximum dynamic 

deflection max , is more in case of base excitation system.  

6. For width b to thickness t ratio of 5, if b and t values taken in the MATLAB program as b=2.5mm and t=0.5mm, b=5mm 

and t=1mm, b=7.5mm and t=1.5mm, b=10mm and t=2mm, respective maximum dynamic deflection max values are 

3.87mm, 8.83mm, 18.43mm and 33.44mm. The same observation is for b/t ratio equal to 10 and 15. Hence it is 

concluded that, for the same value of b/t ratio if values of b and t are increased, the maximum dynamic deflection of the 

cantilever beam max  increases. 
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7. If thickness t is kept constant at 0.5mm, for b/t ratio of 5, 10 and 15 the maximum dynamic deflection max  is 3.87mm, 

5.3mm and 6.27mm respectively. The same observation is for other thickness values. Hence it is concluded that, for the 

constant thickness value, maximum dynamic deflection max  of the cantilever beam increases with the increase in b/t 

ratio. 

8. For the same length l=230mm, width b= 15mm and thickness t= 1.5mm of the cantilever beam and if other parameters 

kept constant i.e. base excitation amplitude Y=1mm, base excitation frequency  =110 rad/s. At x location 150mm from 

the clamped end titanium alloy material Ti-6Al-4V has maximum dynamic deflection max =19.51mm and for steel 

material AISI 1065 has maximum dynamic deflection max  =27.5mm.  
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